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Abstract. 
 
A set of two phase flow experiments for conditions ranging from bubbly flow to cap/slug flow 
have been performed under isothermal concurrent air-water flow conditions in a vertical column 
of 3 m height. Also the liquid properties like the surface tension have varied by adding small 
quantities of 1-Butanol in order to see how these changes affect to the two phase flow 
properties. 
Numerical simulations of these experiments for bubbly flow conditions were performed by 
coupling a Lagrangian code that tracks the 3D motion of the individual bubbles in cylindrical 
coordinates ),,( zr   inside the fluid field under the action of the following forces: buoyancy, 
drag, lift, wall lubrication. Also we have incorporated a 3D stochastic differential equation 
model to account for the random motion of the individual bubbles in the turbulent velocity field 
of the carrier liquid. Also we have considered the deformation that suffers the bubbles when 
they touch the walls of the pipe and are compressed until they rebound.  
The velocity and turbulence fields of the liquid phase were computed by solving the time 
dependent conservation equations in its Reynols Averaged Transport Equation form (RANS). 
The turbulent kinetic energy k, and the dissipation rate   transport equations were 
simultaneously solved by using the k, epsilon model in a (r,z) grid by the finite volume method 
using the SIMPLER algorithm. Both Lagrangian and Eulerian calculations were performed in 
parallel and an iterative self-consistent method was developed. 
 
1 INTRODUCTION  
 
Understanding the dynamics of multiphase systems is an issue of particular interest in the field 
of Computer Fluid Dynamics (CFD) applied to Nuclear Reactor Safety. A better knowledge of 
the forces that act on the bubbles moving in a continuous turbulent random fluid field is of 
importance for a complete description of the bubble’s motion and to obtain for instance the 
radial and axial void fraction distribution inside the reactor channels.  
Experiments specifically designed to understand the forces that act on the bubbles are a tool 
necessary to validate the models implemented inside the CFD codes. With this goal in mind, an 
upward isothermal co-current air-water flow in a vertical pipe (52 mm inner diameter) has been 
experimental investigated. Local measurements of void fraction, interfacial area concentration 
(IAC), interfacial velocity and Sauter mean diameter were measured using a four sensor 
conductivity probe. Liquid velocity and turbulence intensity were also measured using Laser 
Doppler Anemometry (LDA). Different air-water flow configurations were investigated for a liquid 
flow rate ranged from 0.491 m/s to 3 m/s and a void fraction up to 25 % .For each two-phase flow 
configuration twenty five radial position and three axial locations were measured by the 
conductivity probe methodology, and several radial profiles were also measured with LDA at 
different axial positions. 
Numerical simulations of these experiments for bubbly flow conditions were performed by 
coupling a Lagrangian code that tracks the 3D motion of the individual bubbles in cylindrical 



 

2 
 

coordinates ),,( zr   inside the fluid field under the action of the following forces: buoyancy, 
drag, lift, wall lubrication (Auton 1987, Antal at al.1991, Tomiyama et al 1997, 2002) Also we 
incorporate a 3D stochastic differential equation model to account for the random motion of the 
individual bubbles in the turbulent velocity field of the carrier liquid. This type of models 
denoted as continuous random walk models are used to predict the turbulent diffusion of the 
bubbles in the fluctuating velocity field of the carrier fluid (Bocksell and Loth 2006, Dehbi 
2008). Also we have considered the deformation that suffers the bubbles when they touch the 
walls of the pipe and are compressed until they rebound.  
The velocity and turbulence fields of the liquid phase were computed by solving the time 
dependent mass, energy, and momentum conservation equations in its Reynols Averaged 
Transport Equation form (RANS). The turbulent kinetic energy k, and the dissipation rate   
transport equations were simultaneously solved by using the k, epsilon model or the 
renormalized group model (RNG) model in a (r,z) grid by the finite volume method using the 
SIMPLER algorithm. Both Lagrangian and Eulerian calculations were performed in parallel 
because when integrating the 3D stochastic differential equations  that  take into account the 
motion of the bubbles in the fluid field we must consider the  effect of the turbulence on the 
bubble’s motion. To do this we must know the turbulence field that feels the bubble at each 
position along the path trajectory. Good predictions were obtained for the bubbles trajectories 
and the void fraction distribution in the channels when we consider that the lift radial force 
depends on the bubble’s size and the bubbles are distorted, expressing this deformation in terms 
of the Eötvos number (Tomiyama 2002). 
 
2 THE LAGRANGIAN MODEL FOR TRACKING THE BUBBLES 
 
2.1 The forces acting on a single bubble 
 
The bubble motion in cylindrical coordinates ),,( zr   in the fluid field is governed by the 
following set of equations: 

     
i

i
b

blvg F
dt
ud

VC


      (2.1) 

Where vC is the coefficient of the virtual mass force which is assumed equal to 0.5, Vb is the 

volume of the bubble, and iF


 are the different forces acting on the bubble. In cylindrical 
coordinates this equation is equivalent to the following set of equations: 
 
       

i
ribblvg FrrVC ,

2      (2.2) 

 
        

i
ibblvg FrrVC  ,2      (2.3) 

 
     

i
zibblvg FzVC ,      (2.4) 

 
Where ziiri FFF ,,, ,,  are the radial, azimuthal and axial components of the i-th force acting on 
the bubble, and the point on the coordinate components means derivation with respect the time. 
The components of the velocity in cylindrical coordinates are denoted by  
  ),,(,, zrruuu zr    . 
The main forces that act on the bubble are the buoyancy force, the drag force, the lift force, the 
wall-lubrication force and the deformation force.  
The buoyancy force acting on the bubble is directed in the positive axial direction and its 
components are given by: 
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   gVFFF glbbzbbr   ,0,0     (2.5) 
 
The Drag force DragF


acting on the bubble depends on the relative velocity between the bubble 

and the continuous phase (liquid), its components are given by the following expression: 
 

 relrelbl
b

D uuV
R

CF 
1

8
3

        (2.6) 

Where lbrel uuu 
  is the relative velocity that feels the bubble at a given position in the 

liquid velocity field. For the Drag coefficient CD we have used the expression given by 
Tomiyama (1997): 
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Where bRe  and Eob are the Reynolds and the Eötvos numbers respectively for the bubble given 
by: 
 

  
l

blbl
b

duu






Re ,   


 2)( bgl

b

dg
Eo


    (2.8) 

Finally,   is a experimental coefficient that is taken equal to one. 
The experiments performed in vertical pipes with bubbly flow showed that relatively small 
bubbles tend to migrate toward the wall while large bubbles tend to migrate toward the centre. 
This lateral motion was attributed to the so called lift force, which it is due to the motion of a 
particle in a fluid with a velocity gradient in the movement direction; this gradient causes a 
shear field. The first analytical expression for the lift force was deduced by Auton (1987) for the 
case of a spherical particle moving in a velocity gradient of an inviscid fluid. Then this 
expression was extended by Tomiyama et al. that considered the interaction between the bubble 
and the shear field of the fluid (2002), and also considered the deformation of the bubble.  This 
lift force acting on the bubbles is given according to Tomiyama (2002) by the following 
expression: 
 
    


 lblbTLF uuVCF       (2.9) 

 
Where 


is the vorticity of the continuous phase velocity field, lu


 and CT is the 

Tomiyama lift force coefficient that takes into account the interaction between the distorted 
bubble and the shear field and is given by: 
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Where dEo  is an Eötvos modified number, given in terms of the maximum horizontal 
dimension of the bubble dhb 
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And the function )( dEof is the same function defined by Tomiyama: 
 
  474.00204.00159.000105.0)( 23  dddd EoEoEoEof      (2.12) 
 
We note that the coefficient CT defined by Tomiyama becomes negative when the bubble 
diameter becomes bigger than 5.8 mm. This means that for big bubbles the lift force has 
opposite direction than for small bubbles. 
The vorticity in cylindrical coordinates is computed by means of the expression: 
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    (2.13) 

 Because the CFD calculations shows that the velocity profile is logarithmic, we have 
assumed that the average fluid velocity profile in the z direction that is being used to compute 
the vorticity depends on the radial coordinate in the developed flow region and is given by: 
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   (2.14)  

 
Where lwu  /*  , being w the shear stress at the pipe wall, and the constants B and   
are: B=5, and 41.0 is the Von-Karman constant, and R is the pipe radius. 

Therefore on account of equations (2.9), (2.13) and (2.14) the expression for the lift force is 
given in cylindrical coordinates by: 
                     

  rlzbzfbTzlrbrrlzbzfbTLF euuVCeuueuuVCF ˆ)(ˆ)(ˆ)(   


 (2.15) 
 
On account of equation (2.13) for the vorticity and equations (2.14) and (2.15), the lift force can 
be computed by means of the following expression: 
  

   

 






































Rr
u

RforeuuuVC

u
Rrfore

rR
uuuVC

F

rlzbzlbT

rlzbzlbT

LF

*

2*

*

*

5,ˆ)(

50,ˆ












    (2.16) 

 
The next force considered in the model is the bubble deformation force. According to Zaruba et 
al (2007), we need to take on account this force to prevent the bubble centre of mass 
displacement to be unrealistically close to the wall. To compute this force we have assumed a 
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bubble that when approaching and touching the walls deforms and adopts an oblate shape as 
displayed at figure 1. We have assumed that the deformation of the bubble conserves the 
volume so we may write  
 

   2/1

2/3
23

3
4

3
4

y
R

ayaR b
b       (2.17) 

Where y is the distance from the wall to the bubble centre, and a denotes the dimension of the 
ellipsoid in the direction parallel to the wall. This ellipsoid is obviously oblate with ay  . The 
area of this ellipsoid can be calculated as the surface of a revolution spheroid with symmetry 
axis orthogonal to the wall. After some calculus this area is given by the expression: 
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The work that is needed to deform the bubble from the spherical form to the oblate one with 
distance y from the wall to the bubble centre is: 
    )()()( bRySySSyW      (2.19) 

                                    
 
Figure 1 Bubble deforming while its gravity centre approach to the wall 
 
Therefore the corresponding force acting on a single bubble with rRy   is given on account 
that ry ee ˆˆ  by: 
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           (2.20) 
This deformation force is directed toward the centre of the tube. 
The last force considered in the Lagrangian model is the wall lubrication force. This force is 
originated as a consequence of the drainage of liquid around a bubble that is moving in the 
vicinity of the pipe wall. The non-slip condition at the wall should slow the drainage rate 
between the bubble and the wall, at the bubble-wall side, while the drainage of liquid is 
increased on the opposite side of the bubble. Therefore we have a asymmetrical drainage of 
liquid for a bubble moving close to the wall. As a consequence the bubble suffers a 
hydrodinamic force known as wall lubrication force. The expression for the force was first 
deduced by Antal et al (1991), and then improved by Tomiyama et al (1997): 
 

rwLlzbzlbWLWL erfuuVCF ˆ)(2 


    (2.21) 
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The coefficient of Tomiyama and Hosokawa (2002) for the wall lubrication force is given in 
terms of the bubble Reynolds number bRe and the Eotvos bubble number, which is the ratio of 
the buoyancy to surface tension forces acting on the bubble: 
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And the function )(rf wL , that defines the wall lubrication forces near the wall is: 
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2.2 The model of turbulent diffusion by eddies and the connexion with the CFD 
model for the continuous phase. 
 
For the numerical simulation of the continuous phase, the ideal method is to describe all the 
spatial and temporal scales down to the Kolmogorov scales, but this approach known as direct 
numerical simulation (DNS), is not practical for most of the engineering problems, since the 
numerical resources increase with the Reynolds number. A better approach commonly used to 
simplify the calculations is to predict the time-averaged velocity and the turbulence properties 
by solving the random averaged Navier-Stokes equations, and to use the  turbulence parameters 
values ,k  obtained at the different points of the space r to build a statistical model that gives 
the instantaneous fluid fluctuation velocities that are seen by the bubbles in a Lagrangian frame. 
Therefore, the average velocity of the fluid is computed by solving the random averaged 
Navier-Stokes equations (RANS) with the ,k model in cylindrical coordinates. However the 
liquid velocity lll uuu 


that appears in equations (2.6), (2.9), (2.15), and (2.21) is composed 

of an average part lu


 that is computed solving the RANS equations and a fluctuating part lu   
due to the eddies that is obtained by a continuous random walk model in 3D, with isotropic 
turbulence, that in the region where the flow is completely developed we have assumed obeys 
the following Langevin equation (Bocksell and Loth 2006):  
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Where ),( zrk denotes the turbulent kinetic energy per unit mass at point (r,z), and we have 
assumed to simplify the calculations that there is not azimuthal dependency by the symmetry of 
the problem, L is the characteristic time of the Lagrangian time scale correlation (Dehbi 2008).  
Finally the vector   zr   ,,


denotes a Gaussian vector white noise random process, its 

components are independent Gaussian random numbers. 
The model given by equation (2.24) assumes isotropic turbulence and no correlation between 
different components of the fluctuating fluid velocity. The characteristic time L   is computed 
away from the boundary layer by the following expression: 
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At the boundary layer we have used the following expression computed by DNS  by Kallio and 
Reeks (1989): 
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Where the non-dimensional Lagrangian time scale is defined by 
l
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Equation (2.24) is equivalent to the following stochastic differential equation system: 
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Where Wd


is a 3 dimensional Wiener process. 
In computing the turbulence kinetic energy that appears in equations (2.24), (2.25) and (2.27) 
we must consider the turbulence induced by the bubbles in the liquid phase. We have 
considered that the turbulence kinetic energy induced by the bubbles depends on the void 
fraction and the Reynolds number for the bubbles so we write for the total turbulence to be 
considered in (2.27): 
 
          (2.28) 
 
Where the turbulence  induced by the bubbles is given by the expression: 
 
          (2.29) 
 
Where the value of CIb has been chosen equal to 5.5 10-5 , by comparison between the 
calculation results and the experimental data. 
 
To finish this section we must say that when the bubbles move in the axial direction inside the 
pipe they expand its size because the pressure exerted by the liquid column diminishes. This 
expansion is computed by the program by taking into account the pressure of the water column 
over the bubble and the effect of the surface tension assuming that the gas inside the bubble 
behaves like a perfect gas. 
 
3 GOVERNING EQUATIONS FOR THE CONTINUOUS CFD MODEL IN 

CYLINDRICAL GEOMETRY. 
 
The time dependent Reynolds–Averaged governing equations for the momentum of the liquid 
continuous phase when no condensation is included and we assume that this phase behaves as a 
Newtonian incompressible fluid with stresses dominated by the turbulence is given by: 
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ii)    z-component of the momentum equation 
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Where ziri fandf ,, ,  are the components of the interfacial forces per unit volume in the 
radial and axial directions respectively. 
 

The Reynolds shear and normal stresses in the k-ε model are modelled by the effective 
viscosity formulation, which is a direct extension of the laminar deformation law: 
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Where the turbulent eddy viscosity is given according to Launder and Spalding (Launder and 
Spalding 1972) by: 

 

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,
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According to Dhotre, Smith and Niceno the incorporation of the bubble induced viscosity to  
did not alter the simulation results, so in this model we have not considered this contribution to 
the effective viscosity (Dhotre et al 2007), so the neglected contribution to the viscosity is : 
 
                        (3.7) 
 
We have used to calculate the turbulence energy and the dissipation rate the standard   
model  with the model constants suggested by Launder and Spalding  (Dhotre et al 2007). 

 
4 EXPERIMENTAL FACILITY, INSTRUMENTATION AND EXPERIMENTS.  
 
4.1 Description of the experiments 
 
The experimental work was performed using a thermo-hydraulic loop placed at the Energy 
Engineering Institute in Polytechnic University of Valencia (Spain).  The loop is schematically 
illustrated in Figure 2. It consists of a test section, a round transparent tube made by Plexiglas with 
constant section, an upper plenum and a lower plenum where air and water are mixed. The test 
section has a 52 mm inner diameter and a length of 3340 mm.  The water was circulated by two 
centrifugal pumps controlled by a frequency controller.   
 
The air was supplied by a compressor, and it was introduced to the test section through   a porous 
sinter element with an average pore size of 10 mm installed below the mix chamber. The air and 
water temperature was kept constant during the test assay.  The air mass flow rate was measured 
with a thermal mass flow meter and controller ( Bronkhorst ® , EL-FLOW model ), liquid flow rate  
with a  Electromagnetic flow meter ( Badger Meter ® ), and the pressure with a  precision pressure 
transmitter, DRUCK ® PTX 600 series.( INF position: range [0..1] bar, MED, SUP position range 
[ 0..250] mbar  (Prec. 0.5% F.S.) 
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Figure 2:  PUMA Facility scheme 
 

Figure 3: Schematic diagram of four 
sensor conductivity probe 

 
The LDA (Laser Doppler Anemometry) equipment consists of a 0.5W Ar+ Ominichrome laser, 
Dantec Fiberflow beam separator, Dantec FVA 58N40 processor and a PC using the software 
Floware for data acquisition. A lens of 0.125 m focal length was used and the system was operated 
in backscattering mode. The vertical component was determined with green (=514.5 nm) beams 
and the horizontal component with blue (=488 nm) beams. A preshift frequency of 500 kHz was 
used. The flow was seeded with hollow particles which were neutrally buoyant with a 10 µm mean 
size (Dantec HGS-10); therefore, only the liquid velocity was measured. The time series obtained 
were 60 seconds long. The LDA system provides the liquid phase velocity moments. However, a 
number of data-processing steps are required before calculating the velocity moments. Firstly, the 
multiple validation, i.e. the multiple detection of the burst caused by a single particle, was handled 
by first rejecting velocity realizations with ilil uu ,,  >4 ( is the standard deviation of the signal,  

ilu ,  denotes a single velocity realization and ilu ,  denotes the averaged velocity over the 
measurement time). Then, the bursts which follow other bursts within a 1 ms interval were 
removed. Finally, the velocity bias, i.e. higher velocities over-representation, was corrected using 
the so-called 2D+ weighting: inversely weighting the data with the velocity. Since only two 
components are known, the magnitude of the third component is estimated from the variance of the 
second component so the weighting factor w is, 
  

  2'
,

22
,

2
, //1 zlmmzlxl ulduuw   ( 4.1 ) 

 
with dm/lm as the diameter-to-length ratio of the ellipsoidal measurement volume. The use of only 
two components is justified since the magnitude of the vertical and lateral fluctuations will be close, 
and the influence of the third component is slight since dm/lm is also small. In this way, pairs of 
vertical and lateral velocity realizations, which have arrival times inside coincidence windows with 
a length of 200 s, are searched. More technical details about the data processing can be found 
elsewhere (Harteveld et al. 2003, 2004).  
 
4.2 Sensor conductivity probe methodology 
 
The four- sensor probe is basically a phase identifier.  It consists of two sensors made of stainless 
steel, coated with gold, with a diameter of 0.22 mm. The vertical distance between both tips was 
about 1.5 mm. Each sensor is insulated using an insulating varnish except its tips.  If the probe is 
connected to a power supply with a fixed voltage, due to the large difference in conductivity 
between the liquid phase and the gas phase, the impedance signal acquired rises sharply when a 
bubble passes through one of the sensor tips, obtaining a more or less square signal. With a suitable 
signal processing methodology is possible to extract precise information from that raw signal. 
From the time lag, between the impedance signals of the front and back tips, we can know the time 
that needs the front of the bubble to travel from one tip to the other that are far away a distance, S. 
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Then a measurable value of the bubble velocity, mgu , , can be easily obtained. If the bubble moves 
with its velocity vector parallel to the conductivity probe orientation then the measurable value 

mgu ,  of the velocity match the true value of the bubble speed. However, as the bubble velocity 
fluctuates in response to the turbulence of the liquid phase then the bubble’s lateral motion along 
with the finite value of the distance between both tips of the probe, and the bubble curvature can 
cause problems in the measurement of the true value of the bubble velocity. To quantify this 
difference it is possible to define a calibration factor as the ratio between the mean value and the 
measured value of the bubble including the missing bubbles. Calculations performed using the 
Monte-Carlo method show that for the range of velocities of the experiments performed at the 
PUMA facility the calibration factor is close to unity (Muñoz-Cobo et al 2007). 
 
4.3 Set of experiments performed 
 
Several sets of experiments were performed in PUMA facility with different jg and jl values. The 
goals and the characteristics of these experiments are displayed in table 1.  
 
Table 1 Experiments performed at the PUMA facility of the UPV Institute for Energy 
Engineering 
Experi
ments 

Goal of the Experiments Characteristics 

F 
Number 
of runs  

70 

1-To measure the main local parameters of the two phase 
flow at 3 axial locations and 15 radial positions for each 
particular run 
2-To measure the turbulence intensity and the liquid 
velocity at 2 axial position  
3- To study the effect of the geometry of the conductivity 
probe of the measurements 

074.4,086.3,036.2,023.1,51.0fj  

338.0,257.0,176.0,125.0,077.0,035.0,0gj  
Two types of conductivity probes F0X, F0XA 

5 different values of 
the liquid superficial 
velocity fj , and 7 
different values of the 
gas superficial 
velocity gj . 
2 different 
conductivity probe 
geometries. 

Runs70275   
A 

Number 
of runs 

55 
 

1-To study the transition from the bubbly flow regime to the 
slug flow 
2-To study the evolution of the void fraction peak at the wall 

367.0,305.0,257.0,237.0,218.0,188.0,166.0
,142.0,122.0,097.0,054.0,035.0,013.0,0.0

/499.0




g

f

j
smj

 

257.0,206.0,173.0,802.0,736.0,627.0
,528.0,435.0,150.0,115.0,081.0,050.0,029.0,00.0

/006.1



g

l

j
smj

 

833.1,357.1,964.0,740.0,594.0,477.0
,382.0,35.0,296.0,224.0,155.0,093.0,048.0,0.0

/036.2



g

l

j
smj

 

688.1,618.1,286.1,02.1
,804.0,606.0,440.0,289.0,153.0,026.0,00.0

/956.2



g

l

j
smj

 

4 different values of 
the liquid superficial 
velocity fj  and  
different values (14, 
16,14,11) of the gas 
superficial velocity 

gj   
5511141614 

 

B, C, D, 
E 

1-  To measure the effect of changes in the surface tension 
on the local parameters of the two phase flow. 

Different properties 
of the liquid phase for 
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Number 
of Runs  

80 

2- To study the response of the conductivity probe to 
changes in the bubble size. The concentrations of 1-Butanol 
for the sets B,C,D, E are:0, 9, 39, 75 ppm 

the same conditions 
of  flow 

 
The model results were compared with some of the experiments of the B-series when no butanol 
was added. The measurements  with the conductivity probe were performed at 15 radial 
positions ranging from 02.0/ Rr  to 1/ Rr  and in three axial locations at 

56,36,2/ Dz , the geometry of the conductivity probe used for these experiments was the 
XAF0  and the LDA system was located only in one position at 50/ Dz . 

 
5 COMPUTATIONAL RESULTS AND COMPARISON WITH SOME 

EXPERIMENTS OF THE B SERIES 
The dispersed phase is computed by tracking the bubbles along its trajectories. The bubbles are 
generated with a uniform distribution at the bottom of the pipe, and the diameter of the bubbles 
is sampled uniformly in the interval  mmmm 9.2,1.2  according to the experimental data for the 
Sauter Mean Diameter. Then each individual bubble is tracked until it reaches a z coordinate of 
3m, at this position the radial coordinate of each individual bubble and its volume is stored to 
compute the void fraction distribution. A total number of 8000 bubbles were tracked to obtain 
the void fraction distribution for each case.  When each bubble moves in 3D along its trajectory 
its position changes and as a consequence the fluid velocity field that is being seen by the 
bubble also changes.  
Because the turbulence field that is felt by the bubble has two components, one is the turbulence 
generated by the liquid and the other one is the turbulence induced by the bubbles. Because the 
fluctuating component of the liquid velocity field that is seen by the bubbles depends on the 
total turbulent energy ),( zrk at each position (r,z), and to compute the turbulence induced by 
the bubbles we need the void fraction distribution, then we have performed several iterations to 
obtain a good void fraction distribution that is not known a priori. These iterations are 
performed as follow we start with the liquid turbulence alone in the continuous random walk 
model (CRW), then solving the RANS equations for the continuous phase and the Lagrangian 
model for the bubbles we obtain a first iterated value for the void fraction distribution that is 
more peaked than the experimental one because it does not take into account the random walk 
diffusion induced by the bubbles themselves. This distribution is used as an input to integrate 
the Lagrangian equations again and in this way we obtain a second iterated value of the void 
fraction distribution. After three or four iterations the void fraction distribution converges and 
gives values that are close to the experimental ones as displayed in figures 4 and 5. 

void fraction versus r/R for case B03G01 
Experimental=Serie 1 Calculated =Serie2
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Figure 4 Void fraction versus r/R for case B03G01 Bubbly flow conditions with jf=1.994m/s 
and jg=0.134 m/s, with average void fraction 0527.0  
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The predictions of the void fraction distribution is very good in all the points, also the maximum 
position of the void fraction distribution and its value, it is well predicted by the Eulerian-
Lagrangian model developed in this paper. The point near the wall has been computed a little bit 
near the wall than the experimental value. However it seems that the experimental value is 
higher than the computed one. This difference is due to the bubbles with diameters smallest than 
2.1 mm. that slides over the liquid film close to the wall and that are not considered in the 
simulation. 
 

Void Fraction VS r/R for case B03G02
Serie 1=exp, Serie 2 =calculated
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Figure 4 Void fraction versus r/R for case B03G02 Bubbly flow conditions with jf=1.994m/s 
and jg=0.347 m/s, with average void fraction 0820.0  
 
6 CONCLUSIONS AND FUTURE DEVELOPMENTS 
 
The Eulerian-Lagrangian model developped in this paper gives good prediction of the void 
fraction distribution for bubbly flow cases. The turbulence induced by the bubbles plays an 
important role in the Continuous Random Walk model because when this mechanism for 
turbulence production is not included, then the peak of the void fraction is higher than the 
experimental one. Because the void fraction distribution is not known a priori then a self-
consistent calculation is performed in order to obtain the void fraction distribution. This is 
achieved by executing a set of iterations to obtain the true void fraction profile, the first void 
fraction distribution is obtained considering only the liquid turbulence. The output of this 
calculation is a first iterated void fraction distribution that is used as input for the second 
calculation and so on. The convergence is achieved in three or four iterations. 
 
However this model does not included the coalescence of the bubbles, or the break up of the 
bubbles by interactions with turbulent eddies.  So the next step is to include in this Eulerian-
Lagrangian model the Break-Up and Coalescence mechanisms in order to go to the cap/slug 
regime, in this way we could make predictions of the void fraction distribution for several group 
of bubbles. The model is being improved by including these interaction mechanisms in a full 
Lagrangian-Eulerian model were group of bubbles are simultaneously tracked, when the 
distance between two bubbles is smaller than a certain distance an interaction take place. 
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